A proximal quasi-Newton method based on memoryless modified symmetric rank-one formula
نویسندگان
چکیده
We consider proximal gradient methods for minimizing a composite function of differentiable and convex function. To accelerate the general methods, we focus on quasi-Newton type based mappings scaled by matrices. Although it is usually difficult to compute mappings, applying memoryless symmetric rank-one (SR1) formula makes this easier. Since (quasi-Newton) matrices must be positive definite, develop an algorithm using SR1 modified spectral scaling secant condition. give subsequential convergence property proposed method objective functions. In addition, show R-linear under strong convexity assumption. Finally, some numerical results are reported.
منابع مشابه
A new quasi-Newton pattern search method based on symmetric rank-one update for unconstrained optimization
This paper proposes a new robust and quickly convergent pattern search method based on an implementation of OCSSR1 (Optimal Conditioning Based Self-Scaling Symmetric Rank-One) algorithm [M.R. Osborne, L.P. Sun, A new approach to symmetric rank-one updating, IMA Journal of Numerical Analysis 19 (1999) 497–507] for unconstrained optimization. This method utilizes the factorization of approximatin...
متن کاملScaled memoryless symmetric rank one method for large-scale optimization
This paper concerns the memoryless quasi-Newton method, that is precisely the quasi-Newton method for which the approximation to the inverse of Hessian, at each step, is updated from the identity matrix. Hence its search direction can be computed without the storage of matrices. In this paper, a scaled memoryless symmetric rank one (SR1) method for solving large-scale unconstrained optimization...
متن کاملA Symmetric Rank-one Quasi Newton Method for Non-negative Matrix Factorization
As we all known, the nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used in image processing, text compressing and signal processing etc. In this paper, an algorithm for nonnegative matrix approximation is proposed. This method mainly bases on the active set and the quasi-Newton type algorithm, by using the symmetric rank-one and negative curvature d...
متن کاملA symmetric rank-one quasi-Newton line-search method using negative curvature directions
We propose a quasi-Newton line-search method that uses negative curvature directions for solving unconstrained optimization problems. In this method, the symmetric rank-one (SR1) rule is used to update the Hessian approximation. The SR1 update rule is known to have a good numerical performance; however, it does not guarantee positive definiteness of the updated matrix. We first discuss the deta...
متن کاملMemoryless Modified Symmetric Rank-One Method for Large-Scale Unconstrained Optimization
Problem statement: Memoryless QN methods have been regarded effective techniques for solving large-scale problems that can be considered as one step limited memory QN methods. In this study, we present a scaled memoryless modified Symmetric Rank-One (SR1) algorithm and investigate the numerical performance of the proposed algorithm for solving large-scale unconstrained optimization problems. Ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Industrial and Management Optimization
سال: 2023
ISSN: ['1547-5816', '1553-166X']
DOI: https://doi.org/10.3934/jimo.2022123